technology

Scaling software with hybrid intelligence.

WHAT IS A DLM?

DLM (Deterministic Language Model) is Byggr’s proprietary technology designed to generate a fully structured, production-ready code base: zero hallucinations, predictable code generation, built-in compliance.

HOW OUR DLM WORKS

  • SYSTEM MODEL-BASED AS A PROMPT

    Ingests business logic, database schemas, UI model, and architecture blueprints to write code.

  • DETERMINISTIC EXECUTION

    Given the same input, DLM always produces the exact same correct output.

  • BUILT-IN SECURITY & COMPLIANCE

    Ensures compliance with internal/industry standards, and enterprise best practices.

  • PRE-VALIDATED CODE OUTPUT

    Ensures every function, class, and module follows SOLID, DRY, and scalable architecture principles.

example:
Byggr Generated Code
1class PaymentProcessor:
2    def __init__(self, gateway):
3        self.gateway = gateway # ✅ Uses predefined, validated class
4
5    def process_payment(self, amount, card_details):
6        secure_token = self.gateway.encrypt(card_details) # ✅ Valid function
7        return self.gateway.charge(secure_token, amount)
Python
class PaymentProcessor:
    def __init__(self, gateway):
        self.gateway = gateway # ✅ Uses predefined, validated class

    def process_payment(self, amount, card_details):
        secure_token = self.gateway.encrypt(card_details) # ✅ Valid function
        return self.gateway.charge(secure_token, amount)
WHY IS THIS CODE SUPERIOR:
  • No hallucinated functions – Uses only defined methods and structures

  • Well-structured, modular, and maintainable

  • Follows dependency injection & encapsulation best practices

DLM VS. LLM

LLMs guess, so results can vary and errors are common. Byggr’s Deterministic Language Model generates precise, consistent, production-ready code, using LLMs only where they add value.

features

dlm (byggr hybrid ai)

llm (gpt-40, claude, gemini, etc.)

processing logic

Uses structured, rule-based execution

Uses probabilistic pattern matching

code accuracy

100% accurate, pre-validated code

May hallucinate functions or logic

context awareness

Retains full system architecture

Limited to short-term context window

security & compliance

Enforces security policies automatically

Can introduce vulnerabilities

scalability & maintainability

Consistent, structured output every time

Code may be inconsistent across sessions

customization & adaptability

Structured but allows developer control

Flexible for exploratory coding

example:
LLM Hallucination
1def process_payment(amount, card_details):
2    secure_token = encrypt_card(card_details) # ❌ Fake function, does not exist
3    gateway = PaymentGateway() # ❌ Undefined class
4    return gateway.charge(secure_token, amount)
Python
def process_payment( amount, card_details):
        secure_token = encrypt_card(card_details) # ❌ Fake function, does not exist
        gateway = PaymentGateway() # ❌ Undefined class
        return gateway.charge(secure_token, amount)
WHAT'S WRONG WITH THIS CODE:
  • "encrypt_card()" and "PaymentGateway()" do not exist.

  • The LLM guessed the function names, leading to runtime errors.

OUR HYBRID APPROACH

Byggr doesn’t choose between LLM or DLM — we use both in a structured, scalable workflow to maximize their individual strengths.

WHY USE A
LLM WHEN WE
HAVE A DLM?

  • UNDERSTANDING UNSTRUCTURED INPUT

    LLMs interpret natural language descriptions, PRDs, wireframes, and pseudo-code.

    DLM takes those interpretations and converts them into clean, production-ready code.

  • GENERATING SYSTEM MODELS

    Instead of manually architecting applications, LLMs propose best-fit data models and high-level system designs, helping teams visualize structure, dependencies, and workflows before a single line of code is written.

  • EXPLORATORY PROBLEM-SOLVING

    Some decisions (SQL and REST) require multiple considerations — LLMs evaluate options.

example:
LLM Creating an Initial System Model
Graphic of an LLM chat prompt
why this approach is superior:
  • Data Model → Users, Messages, Chats

  • API Design → Authentication, WebSockets, Message history

Where the DLM takes over

  • Ensures code accuracy

    Converts LLM-generated blueprints into structured, error-free code.

  • Enforces best practices

    Implements SOLID principles, modular design, and clean architecture.

  • Prevents hallucinations

    Ensures every function, class, and module is logically sound and executable.

example:
Byggr Generated Code
1class ChatService:
2    def __init__(self, repository):
3        self.repository = repository # ✅ Uses structured, validated dependencies
4
5    def send_message(self, user_id, chat_id, text):
6        user = self.repository.get_user(user_id)
7        chat = self.repository.get_chat(chat_id)
8        if chat and chat.is_active:
9            self.repository.save_message(user, chat, text) # ✅ Predefined repository function
10            return True
11        return False
Python
class ChatService:
    def __init__(self, repository):
        self.repository = repository # ✅ Uses structured, validated dependencies

    def send_message(self, user_id, chat_id, text):
         user = self.repository.get_user(user_id) 
         chat = self.repository.get_chat(chat_id) 
         if chat and chat.is_active:
                self.repository.save_message(user, chat, text)  # ✅ Predefined repository function
                return True
        return False
KEY DIFFERENCE:
  • The LLM provided the blueprint, but DLM ensured structural correctness and maintainability.

Our Hybrid Workflow

Byggr doesn’t choose between LLM or DLM — we use both in a structured, scalable workflow to maximize their individual strengths.

LLM
dlm
human
Infographic of our hybrid workflow
Infographic of our hybrid workflow
01
Input Analysis
02
System Model Generation
03
Code Generation
04
Smart [Re]Authoring

Extracts system requirements, relationships, and dependencies (LLM)

LLM creates an initial draft of the system model (LLM)

Converts the structured system model into production-ready code (LLM)

Developers can modify logic, integrate APIs, or extend functionality (LLM)

Proposes high-level architecture and component interactions (LLM)

DLM validates, refines, and structures the model to ensure correctness (DLM)

Prevents hallucinations, enforces security and compliance, and maintains modular architecture (LLM)

DLM safeguards developer modifications, ensuring future AI-generated updates don’t overwrite custom code (LLM)

Contribute requirements in multiple formats (Human)

Verify probabilistic outcome and contribute to the system model creation (Human)

Verify code output (Human)

DLM safeguards developer modifications, ensuring future AI-generated updates don’t overwrite custom code (DLM)

01
input analysis
  • Extracts system requirements, relationships, and dependencies (LLM)

  • Proposes high-level architecture and component interactions (LLM)

  • Contribute requirements in multiple formats (Human)

02
System Model Generation
  • LLM creates an initial draft of the system model (LLM)

  • DLM validates, refines, and structures the model to ensure correctness (DLM)

  • Verify probabilistic outcome and contribute to the system model creation (Human)

03
Code Generation
  • Converts the structured system model into production-ready code (LLM)

  • Prevents hallucinations, enforces security and compliance, and maintains modular architecture (LLM)

  • Verify code output (Human)

04
Smart [Re]Authoring
  • Developers can modify logic, integrate APIs, or extend functionality (LLM)

  • DLM safeguards developer modifications, ensuring future AI-generated updates don’t overwrite custom code (LLM)

  • DLM safeguards developer modifications, ensuring future AI-generated updates don’t overwrite custom code (DLM)

THE POWER OF HYBRID AI
IN SOFTWARE DEVELOPMENT

Byggr Studio’s LLM + DLM hybrid model isn’t just a technical choice — it’s a strategic innovation in AI-driven development.

Faster development

Understands natural language, written, and visual requirements

Higher code quality

Hallucination-free, repeatable outputs

Lower debugging effort

Error-free code before deployment

Compliance

Audit-ready by default